Witchcraft Compiler Collection :

User Manual

Jonathan Brossard

v1.0 November 2016

The Witchcraft Compiler Collection User Manual

Welcome to the Witchcraft Compiler Collection User Manual.

The latest version of this manual is available at:

https://github.com/endrazine/wcc/wiki

Copyrights 2016 Jonathan Brossard. All rights reserved.

The Witchcraft Compiler Collection User Manual

Getting started Other resources wcc

wcch wld wldd wsh

wsh : commands

wsh : Core API

wsh : the punk-C language wsh with ARM

This page documents how to download, compile and install WCC.

Downloading the source code

The official codebase of the Witchcraft Compiler Collection is hosted on github at https://github.com/endrazine/wcc/ . It uses git modules, so some extra steps are needed to fetch all the code including depedencies. To download the source code of wcc, in a terminal, type:

git clone https://github.com/endrazine/wcc.git cd wcc

git submodule init git submodule update

This will create a directory named wcc and fetch all required source code in it.

Prerequisites

Installing requirements

The Witchcraft Compiler Collection requires the following software to be installed:

Glibc, libbfd, libdl, zlib, libelf, libreadline, libgsl.

Installing requirements on Ubuntu/Debian

Under ubuntu/debian those dependancies can be installed with the following command:

sudo apt-get install clang libbfd-dev uthash-dev libelf-dev libcapstone-dev libreadline6 libreadline6-dev libiberty-dev libgsl-dev

Building and Installing:

Building WCC

From your root wcc directory, type:

make

Installing WCC

Then to install wcc, type:

sudo make install

Building the WCC documentation

WCC makes use of doxygen to generate its documentation. From the root wcc directory, type

make documentation

Presentations

The slides of the presentation given at the DEF CON 24 Conference in August 2016 are available at: https://github.com/endrazine/wcc/raw/master/doc/presentations/Jonathan_Brossard_Witchract_Co mpiler_Collection_Defcon24_2016.pdf

More demos

The source code of the all demos of the presentation given at DEF CON can be found here : https://github.com/endrazine/wcc/tree/master/doc/presentations/demos_defcon24_2016

Developper Manual

The Doxygen documentation of the Witchcraft Compiler Collection is available at: https://github.com/endrazine/wcc/raw/master/doc/WCC_internal_documentation.pdf

wcc : The Witchcraft Core Compiler

The wcc compiler takes binaries (ELF, PE, ...) as an input and creates valid ELF binaries as an output. It can be used to create relocatable object files from executables or shared libraries.

wcc command line options

jonathan@blackbox:~$ wcc

 

(01:47:53 Jul 29 2016)

Witchcraft Compiler Collection (WCC) version:0.0.1

Usage: wcc [options] file

 

 

options:

 

 

-o, --output

<output file>

 

-m, --march

<architecture>

 

-e, --entrypoint

<0xaddress>

 

-i, --interpreter

<interpreter>

 

-p, --poison

<poison>

 

-s, --shared -c, --compile -S, --static -x, --strip -X, --sstrip -E, --exec -C, --core -O, --original -D, --disasm -d, --debug -h, --help -v, --verbose -V, --version

jonathan@blackbox:~$

Options description

-o, --output

<output file>

 

 

Speficy the desired output file name. Default: a.out

-m, --march<architecture>

Specify the desired output architecture. This option is ignored. Run the 64bit or the 32bit versions of wcc to produce 64 bits or 32 bits binaries respectively.

-e, --entrypoint <0xaddress>

Specify the address of the entry point as found in the ELF header manually.

-i, --interpreter <interpreter>

Specify a new program interpreter to be written to the interpreter segment of the output program.

-p, --poison<poison>

Specify a poison byte to be written in the unused bytes of the output file.

-s, --shared

Produce a shared library.

-c, --compile

Produce relocatable object files.

-S, --static

Produce a static binary.

-x, --strip

Do not use the Dynamic symbol table to unstrip the binary. Default: off.

-X, --sstrip

Strip more.

-E, --exec

Set binary type to ET_EXEC in the ELF header.

-C, --core

Set binary type to a Core file in the ELF header.

-O, --original

Copy original section headers from input file (which must be an ELF) instead of guessing them from bfd sections. Default: off.

-D, --disasm

Display application disassembly.

-d, --debug

Enable debug mode (very verbose).

-h, --help

Display help.

-v, --verbose

Be verbose.

-V, --version

Display version number.

Example usage of wcc

The primary use of wcc is to "unlink" (undo the work of a linker) ELF binaries, either executables or shared libraries, back into relocatable shared objects. The following command line attempts to unlink the binary /bin/ls (from GNU binutils) into a relocatable file named /tmp/ls.o

jonathan@blackbox:~$ wcc -c /bin/ls -o /tmp/ls.o jonathan@blackbox:~$

This relocatable file can then be used as if it had been directly produced by a compiler. The following command would use the gcc compiler to link /tmp/ls.o into a shared library /tmp/ls.so

jonathan@blackbox:~$ gcc /tmp/ls.o -o /tmp/ls.so -shared jonathan@blackbox:~$

Limits of wcc

wcc will process any file supported by libbfd and produce ELF files that will contain the same mapping when relinked and executed. This includes PE or OSX COFF files in 32 or 64 bits. However, rebuilding relocations is currently supported only for Intel ELF x86_64 binaries. Transforming a PE into an ELF and invoking pure functions is for instance supported.

How does it work ?

wcc uses libbfd to parse the sections of the input binary, and generates an ELF file with the corresponding Sections and Segments. wcc also handles symbols and symbol tables and attempts to unstrip stripped binaries by parsing their dynamic symbol tables. Relocations are recreated as needed for ELF Intel x86_64 input files. Help on extending to other cpus and relocation types very welcome :)

What does the resulting /tmp/ls.o look like in details ?

In order to observe more closely the output of wcc, let's take a look at /tmp/ls.o as parsed by readelf (GNU binutils package) editted for brevity:

jonathan@blackbox:~$ readelf -a /tmp/ls.o

 

 

 

 

 

 

ELF Header:

7f 45

4c

46

02 01 01

00 00

00

00

00

00 00

00

00

 

Magic:

 

Class:

 

 

 

 

 

ELF64

 

 

 

 

 

Data:

 

 

 

 

 

2's complement, little endian

Version:

 

 

 

 

 

1 (current)

 

 

 

OS/ABI:

 

 

 

 

 

UNIX - System V

 

 

 

ABI Version:

 

 

 

 

0

 

 

 

 

 

 

Type:

 

 

 

 

 

REL (Relocatable file)

 

Machine:

 

 

 

 

 

Advanced Micro Devices X86-64

Version:

 

 

 

 

 

0x1

 

 

 

 

 

 

Entry point address:

 

 

0x0

 

 

 

 

 

 

Start of program headers:

 

0 (bytes into file)

 

Start of section headers:

 

2348624 (bytes into file)

Flags:

 

 

 

 

 

0x0

 

 

 

 

 

 

Size of this header:

 

 

64 (bytes)

 

 

 

 

Size of program headers:

 

0 (bytes)

 

 

 

 

Number of program headers:

 

0

 

 

 

 

 

 

Size of section headers:

 

64 (bytes)

 

 

 

 

Number of section headers:

 

9

 

 

 

 

 

 

Section header string table index: 8

 

 

 

 

 

 

Section Headers:

 

 

Type

 

 

Address

 

 

Offset

[Nr] Name

 

 

 

 

 

 

Info

Size

 

 

 

EntSize

 

 

Flags

Link

 

Align

[ 0]

 

 

 

NULL

 

 

0000000000000000

00000000

0000000000000000

0000000000000000

 

 

0

 

0

0

[ 1] .text

 

 

PROGBITS

 

0000000000000000

0001ae00

00000000002191ec

0000000000000000 WAX

0

 

0

16

[ 2] .rodata

 

 

PROGBITS

 

0000000000000000

00011f20

00000000000050fc

0000000000000000

 

A

0

 

0

32

[ 3] .data

 

 

PROGBITS

 

0000000000000000

0001a3a0

0000000000000254

0000000000000000

 

WA

0

 

0

32

[ 4] .bss

NOBITS

0000000000000000

0

0001a5f4

[ 5]

0000000000000d60

0000000000000000

WA

0

32

.rela.all

RELA

0000000000000000

1

00233fe0

[ 6]

0000000000007158

0000000000000018

A

7

8

.strtab

STRTAB

0000000000000000

0

0023b138

[ 7]

0000000000000dee

0000000000000000

 

0

1

.symtab

SYMTAB

0000000000000000

5

0023bf26

[ 8]

00000000000016f8

0000000000000018

 

6

8

.shstrtab

STRTAB

0000000000000000

0

0023d890

 

000000000000003e

0000000000000000

 

0

1

Key to Flags:

W (write), A (alloc), X (execute), M (merge), S (strings), l (large)

I (info), L (link order), G (group), T (TLS), E (exclude), x (unknown)

O (extra OS processing required) o (OS specific), p (processor specific)

There are no section groups in this file.

There are no program headers in this file.

Relocation section '.rela.all' at offset 0x233fe0 contains 1209 entries:

Offset

Info

Type

Sym. Value

Sym. Name + Addend

000000217eb0

000600000001

R_X86_64_64

0000000000000000

__ctype_toupper_loc +

0

000700000001

R_X86_64_64

0000000000000000

__uflow + 0

000000217eb8

000000217ec0

000800000001

R_X86_64_64

0000000000000000

getenv

+ 0

000000217ec8

000900000001

R_X86_64_64

0000000000000000

sigprocmask + 0

000000217ed0

000a00000001

R_X86_64_64

0000000000000000

raise + 0

000000217ed8

007b00000001

R_X86_64_64

00000000004021f0

free +

0

000000217ee0

000b00000001

R_X86_64_64

0000000000000000

localtime + 0

000000217ee8

000c00000001

R_X86_64_64

0000000000000000

__mempcpy_chk + 0

000000217ef0

000d00000001

R_X86_64_64

0000000000000000

abort + 0

000000217ef8

000e00000001

R_X86_64_64

0000000000000000

__errno_location + 0

000000217f00

000f00000001

R_X86_64_64

0000000000000000

strncmp + 0

...

000400000002

R_X86_64_PC32

0000000000000000

.bss +

abd

00000000091f

000000000971

000400000002

R_X86_64_PC32

0000000000000000

.bss +

ac1

000000000976

00020000000a

R_X86_64_32

0000000000000000

.rodata + 1924

000000000988

000400000002

R_X86_64_PC32

0000000000000000

.bss +

acd

0000000009b6

000400000002

R_X86_64_PC32

0000000000000000

.bss +

ad1

0000000009ce

00020000000a

R_X86_64_32

0000000000000000

.rodata + 1160

0000000009d3

00020000000a

R_X86_64_32

0000000000000000

.rodata + 3ca8

000000000a0b

000400000002

R_X86_64_PC32

0000000000000000

.bss +

b3e

000000000a12

000400000002

R_X86_64_PC32

0000000000000000

.bss +

b46

000000000a26

000400000002

R_X86_64_PC32

0000000000000000

.bss +

b0d

000000000a2f

000400000002

R_X86_64_PC32

0000000000000000

.bss +

b36

000000000a39

000400000002

R_X86_64_PC32

0000000000000000

.bss +

b2a

...

008500000002

R_X86_64_PC32

0000000000000000

optarg

- 4

000000000b25

000000000b45

000400000002

R_X86_64_PC32

0000000000000000

.bss +

ad1

000000000b50

000400000002

R_X86_64_PC32

0000000000000000

.bss +

b3e

00000000240f

008200000002

R_X86_64_PC32

0000000000000000

stderr

- 4

...

 

 

 

 

 

The decoding of unwind sections for machine type Advanced Micro Devices X86-64 is not currently supported.

Symbol table '.symtab' contains 245 entries:

Num:

Value

Size

Type

Bind

Vis

Ndx

Name

0: 0000000000000000

0

NOTYPE

LOCAL

DEFAULT

UND

.text

1: 0000000000000000

0

SECTION

LOCAL

DEFAULT

1

2: 0000000000000000

0

SECTION

LOCAL

DEFAULT

2

.rodata

3: 0000000000000000

0

SECTION

LOCAL

DEFAULT

3

.data

4: 0000000000000000

0

SECTION

LOCAL

DEFAULT

4

.bss

5: 0000000000000000

0

SECTION

LOCAL

DEFAULT

5

.unknown

6: 0000000000000000

0

FUNC

GLOBAL

DEFAULT

UND

__ctype_toupper_loc

7: 0000000000000000

0

FUNC

GLOBAL

DEFAULT

UND

__uflow

8: 0000000000000000

0

FUNC

GLOBAL

DEFAULT

UND

getenv

9: 0000000000000000

0

FUNC

GLOBAL

DEFAULT

UND

sigprocmask

10: 0000000000000000

0

FUNC

GLOBAL

DEFAULT

UND

raise

11: 0000000000000000

0

FUNC

GLOBAL

DEFAULT

UND

localtime

12: 0000000000000000

0

FUNC

GLOBAL

DEFAULT

UND

__mempcpy_chk

...

 

0

NOTYPE

WEAK

DEFAULT

UND

old__fini

132: 0000000000411efc

133: 0000000000000000

8

OBJECT

GLOBAL

DEFAULT

UND

optarg

134: 0000000000000000

100

FUNC

GLOBAL

DEFAULT

1

old_plt

135: 0000000000000738

100

FUNC

GLOBAL

DEFAULT

1

old_text

136: 00000000000104d5

100

FUNC

GLOBAL

DEFAULT

1

old_text_end

137: 000000000000b538

100

FUNC

GLOBAL

DEFAULT

1

internal_0040d6a0

138: 000000000000fd78

100

FUNC

GLOBAL

DEFAULT

1

internal_00411ee0

139: 000000000000c4d8

100

FUNC

GLOBAL

DEFAULT

1

internal_0040e640

140: 0000000000007ce8

100

FUNC

GLOBAL

DEFAULT

1

internal_00409e50

141: 000000000000ed28

100

FUNC

GLOBAL

DEFAULT

1

internal_00410e90

142: 000000000000ead8

100

FUNC

GLOBAL

DEFAULT

1

internal_00410c40

143: 00000000000075e8

100

FUNC

GLOBAL

DEFAULT

1

internal_00409750

144: 000000000000e9c8

100

FUNC

GLOBAL

DEFAULT

1

internal_00410b30

145: 0000000000007fb8

100

FUNC

GLOBAL

DEFAULT

1

internal_0040a120

146: 000000000000a6a8

100

FUNC

GLOBAL

DEFAULT

1

internal_0040c810

147: 000000000000c7c8

100

FUNC

GLOBAL

DEFAULT

1

internal_0040e930

148: 000000000000c498

100

FUNC

GLOBAL

DEFAULT

1

internal_0040e600

149: 000000000000c4c8

100

FUNC

GLOBAL

DEFAULT

1

internal_0040e630

150: 000000000000c4e8

100

FUNC

GLOBAL

DEFAULT

1

internal_0040e650

151: 0000000000002c68

100

FUNC

GLOBAL

DEFAULT

1

internal_00404dd0

...

 

100

FUNC

GLOBAL

DEFAULT

1

internal_00410ac0

241: 000000000000e958

242: 000000000000fbc8

100

FUNC

GLOBAL

DEFAULT

1

internal_00411d30

243: 000000000000fc48

100

FUNC

GLOBAL

DEFAULT

1

internal_00411db0

244: 000000000000fc88

100

FUNC

GLOBAL

DEFAULT

1

internal_00411df0

No version information found in this file. jonathan@blackbox:~$

It is worth in particular noticing that wcc rebuilt different types of relocations under the new .rela.all section. It also stripped the sections non essential to a relocatable object file from the input binary, and rebuilt a symbol table. On this last topic, it is also worth noticing that wcc created new symbols named internal_00XXXXXX where 0xXXXXXX is the address of a static function within the binary, not normally exported. Finally, wcc also makes used of additional symbol tables to find the address of additional functions if any are available (parsing both symbol tables and dynamic symbol tables).

wcch command line options

wcch takes a single mandatory argument : the path to an ELF executable or shared library.

wcch </path/to/binary>

wcch will generate minimal C header files suitable for compiling C code against the binary given as argument.

Example usage of wcch

The following command instructs wcch to generate C headers from the apache2 executable and redirects the output from the standard output to a file named /tmp/apache2.h ready for use as a header in a C application.

jonathan@blackbox:~$ wcch /usr/sbin/apache2 >/tmp/apache2.h jonathan@blackbox:~$

Here is the actual content of the generated /tmp/apache2.h file, edited because of its large size:

/**

*

*Automatically generated by the Whitchcraft Compiler Collection 0.0.1

*23:17:22 Jul 26 2016

*

*/

/**

*Imported objects **/

extern void *_dlfcn_hook; extern void *daylight; extern void *_sys_nerr; extern void *getdate_err; extern void *__rcmd_errstr; extern void *optind;

extern void *argp_program_version; extern void *__free_hook;

extern void *__tzname; extern void *__progname; extern void *_environ;

...

extern void *ap_hack_ap_build_cont_config; extern void *ap_hack_ap_find_etag_weak;

extern void *ap_hack_ap_hook_get_post_read_request; extern void *ap_hack_apr_file_name_get;

extern void *ap_hack_apr_sdbm_unlock; extern void *ap_hack_ap_is_rdirectory; extern void *ap_hack_ap_request_has_body;

extern void *ap_hack_apr_pool_cleanup_run; extern void *ap_hack_ap_hook_get_type_checker; extern void *ap_hack_apr_global_mutex_pool_get; extern void *ap_hack_apr_file_data_set; extern void *ap_hack_ap_hook_get_child_status; extern void *ap_hack_ap_set_server_protocol; extern void *ap_hack_apr_hash_make_custom; extern void *ap_hack_ap_malloc;

extern void *ap_hack_ap_pool_cleanup_set_null; extern void *ap_hack_apr_dbm_firstkey; extern void *ap_hack_apr_strmatch_precompile;

...

/**

*Imported functions **/

void *dlclose(); void *dlinfo(); void *dladdr1(); void *dlsym(); void *dladdr(); void *dlopen(); void *dlmopen(); void *dlerror(); void *dlvsym(); void *putwchar(); void *__strspn_c1();

void *__gethostname_chk(); void *__strspn_c2(); void *setrpcent();

void *__wcstod_l(); void *__strspn_c3(); void *epoll_create();

void *sched_get_priority_min(); void *__getdomainname_chk(); void *klogctl();

void *__tolower_l(); void *dprintf(); void *setuid();

...

void *ap_mpm_pod_killpg(); void *ap_register_hooks();

void *ap_remove_output_filter_byhandle(); void *ap_hook_create_request();

void *ap_expr_exec_ctx(); void *ap_send_http_options(); void *ap_mpm_set_max_requests(); void *ap_os_escape_path(); void *ap_file_walk();

void *ap_build_cont_config(); void *ap_start_lingering_close(); void *ap_hook_generate_log_id(); void *ap_varbuf_cfg_getline(); void *ap_hook_test_config(); void *ap_fcgi_header_to_array(); void *ap_http_chunk_filter();

void *ap_random_insecure_bytes(); void *ap_pcfg_open_custom(); void *ap_hook_get_auth_checker(); void *ap_expr_yyfree();

...

void *uuid_copy(); void *uuid_generate();

The functions prototypes and imported objects cover all of the API exported by executables and shared libraries including their recursive dependancies. All the programmable API in the address space. #Witchcraft

How is this useful ?

Both gcc and clang will happily use the above mention function prototypes when compiling C code making use of them instead of issuing errors due to missing function prototypes. This is a great feature : it means we can now call those functions from C without actually knowing their exact prototypes (such as arguments number and types).

7f 45 4c 46 02 01 01 00 00 00 00 00 00 00 00 00

wld : The Witchcraft Linker.

wld takes an ELF executable as an input and modifies it to create a shared library.

wld command line options

jonathan@blackbox:~$ wld

(23:11:13 Jul 21 2016)

Witchcraft Compiler Collection (WCC) version:0.0.1

Usage: wld [options] file

 

options:

 

 

-libify

Set Class to ET_DYN in input ELF file.

jonathan@blackbox:~$

 

 

 

 

 

Example usage of wld

The following example libifies the executable /bin/ls into a shared library named /tmp/ls.so.

jonathan@blackbox:~$ cp /bin/ls /tmp/ls.so jonathan@blackbox:~$ wld -libify /tmp/ls.so jonathan@blackbox:~$

Limits of wld

wld currently only works on ELF binaries. However wld can process ELF executables irrelevant of their architecture or operating system. wld could for instance process Intel, ARM or SPARC executables from Android, Linux, BSD or UNIX operating systems and transform them into "non relocatable shared libraries". Feel free to refer to the documentation under the /doc directory for more ample details.

Do I even need wld ?

If the ELF executable you whish to work with has been compiled with as Position Independant Executable (-pie -fpie compiler flags with gcc or clang), it already is a functional shared library and doesn't need to be libified. In particular, its ELF header is already set to ET_DYN.

Here is an example executable that is of type ET_EXEC and can be libified. Mind the Type field set to EXEC:

jonathan@blackbox:~$ file /bin/ls

/bin/ls: ELF 64-bit LSB executable, x86-64, version 1 (SYSV), dynamically linked (uses shared libs), for GNU/Linux 2.6.24, BuildID[sha1]=8d0966ce81ec6609bbf4aa439c77138e2f48a471, stripped jonathan@blackbox:~$ readelf -h /bin/ls

ELF Header:

Magic:

Class:

ELF64

Data:

2's complement, little endian

Version:

1 (current)

OS/ABI:

UNIX - System V

ABI Version:

0

 

Type:

EXEC (Executable file)

Machine:

Advanced Micro Devices X86-64

Version:

0x1

 

Entry point address:

0x404890

Start of program headers:

64

(bytes into file)

Start of section headers:

108288 (bytes into file)

Flags:

0x0

(bytes)

Size of this header:

64

Size of program headers:

56

(bytes)

Number of program headers:

9

(bytes)

Size of section headers:

64

Number of section headers:

28

 

Section header string table index: 27 jonathan@blackbox:~$

Here is an exemple binary compiled as Position Independant Executable and not requiring libification to be used as a shared library or loaded in wsh. Mind the Type field set to DYN:

jonathan@blackbox:~$ file /usr/sbin/apache2

 

 

 

 

/usr/sbin/apache2: ELF 64-bit LSB

shared object, x86-64, version 1 (SYSV),

dynamically linked (uses shared libs), for GNU/Linux 2.6.24,

BuildID[sha1]=02c74092325980f41ca3e1c2995daec1f3b30ea2, stripped

jonathan@blackbox:~$ readelf -h /usr/sbin/apache2

 

 

ELF Header:

7f 45

4c

46

02 01 01

00 00

00

00

00

00 00

00

00

Magic:

Class:

 

 

 

 

 

 

ELF64

 

 

 

 

Data:

 

 

 

 

 

 

2's complement, little endian

Version:

 

 

 

 

 

 

1 (current)

 

 

OS/ABI:

 

 

 

 

 

 

UNIX - System V

 

 

ABI Version:

 

 

 

 

 

0

 

 

 

 

 

Type:

 

 

 

 

 

 

DYN (Shared object file)

Machine:

 

 

 

 

 

 

Advanced Micro Devices X86-64

Version:

 

 

 

 

 

 

0x1

 

 

 

 

 

Entry point address:

 

 

 

0x37156

 

 

 

 

Start of program headers:

 

 

64

(bytes into file)

Start of section headers:

 

 

635736 (bytes into file)

Flags:

 

 

 

 

 

 

0x0

(bytes)

 

 

 

Size of this header:

 

 

 

64

 

 

 

Size of program headers:

 

 

56

(bytes)

 

 

 

Number of program headers:

 

 

9

(bytes)

 

 

 

Size of section headers:

 

 

64

 

 

 

Number of section headers:

 

 

28

 

 

 

 

 

Section header string table index: 27 jonathan@blackbox:~$

Finally, here is what a libified shared library looks like. The Type field has been set to DYN by wld during the libification process:

jonathan@blackbox:~$ file /tmp/ls.so

/tmp/ls.so: ELF 64-bit LSB shared object, x86-64, version 1 (SYSV), dynamically linked, BuildID[sha1]=04fd28208b659339be2711ea5f6d3485b6117da6, not stripped jonathan@blackbox:~$ readelf -h /tmp/ls.so

ELF Header:

7f 45

4c

46

02 01 01

00 00

00

00

00

00 00

00

00

Magic:

Class:

 

 

 

 

 

ELF64

 

 

 

 

Data:

 

 

 

 

 

2's complement, little endian

Version:

 

 

 

 

 

1 (current)

 

 

OS/ABI:

 

 

 

 

 

UNIX - System V

 

 

ABI Version:

 

 

 

 

0

 

 

 

 

 

Type:

 

 

 

 

 

DYN (Shared object file)

Machine:

 

 

 

 

 

Advanced Micro Devices X86-64

Version:

 

 

 

 

 

0x1

 

 

 

 

 

Entry point address:

 

 

0x6200

 

 

 

 

Start of program headers:

 

64

(bytes into file)

Start of section headers:

 

2261504 (bytes into file)

Flags:

 

 

 

 

 

0x0

(bytes)

 

 

 

Size of this header:

 

 

64

 

 

 

Size of program headers:

 

56

(bytes)

 

 

 

Number of program headers:

 

6

(bytes)

 

 

 

Size of section headers:

 

64

 

 

 

Number of section headers:

 

27

 

 

 

 

 

Section header string table index: 24 jonathan@blackbox:~$

wldd : print shared libraries compilation flags

When compiling C code, it is often required to pass extra arguments to the compiler to signify which shared libraries should explicitely linked against the compile code. Figuring out those compilation parameters can be cumbersome. The wldd commands displays the shared libraries compilation flags given at compile time for any given ELF binary.

wldd command line options

jonathan@blackbox:~$ wldd

Usage: /usr/bin/wldd </path/to/bin>

Returns libraries to be passed to gcc to relink this application.

jonathan@blackbox:~$

Example usage of wldd

On /bin/ls (ET_EXEC ELF executable)

The following command displays shared libraries compilation flags as passed to gcc when compiling /bin/ls from GNU binutils:

jonathan@blackbox:~$ wldd /bin/ls

-lselinux -lacl -lc -lpcre -ldl -lattr jonathan@blackbox:~$

On apache2 (ET_DYN ELF executable compiled as Position Independant Executable / full ASLR)

The following command displays the compilation flags relative to shared libraries used when compiling /usr/sbin/apache2:

jonathan@blackbox:~$ wldd /usr/sbin/apache2

-lpcre -laprutil-1 -lapr-1 -lpthread -lc -lcrypt -lexpat -luuid -ldl jonathan@blackbox:~$

On the openssl shared library

This command can also be ran on shared libraries. The following example displays the same compiler options for the openssl shared library:

jonathan@blackbox:~$ wldd /usr/lib/x86_64-linux-gnu/libssl.so.0.9.8 -lcrypto -lc -ldl -lz

jonathan@blackbox:~$

Security Caveat

wldd invokes binutils' ldd which in turns loads the binary passed as an argument using its hardcoded dynamic linker. This does run code inside the analysed binary. As such, running wldd on potentially hostile code (eg: malware) is not safe.

Note: We could get the name of the shared libraries linked with this binary from the content of its

.dynamic section without having to rely on ldd nor run the binary. That would be very useful. It would also produce a non recursive answer (unlike wldd currenty), which would reflect more the actual linking of the binary. Feel free to implement it :)

wsh : The Witchcraft shell

The witchcraft shell accepts ELF shared libraries, ELF ET_DYN executables and Witchcraft Shell Scripts written in Punk-C as an input. It loads all the executables in its own address space and make their API available for programming in its embedded interpreter. This provides for binaries functionalities similar to those provided via reflection on languages like Java.

wsh command line options

jonathan@blackbox:~$ wsh -h

Usage: wsh [script] [options] [binary1] [binary2] ... [-x] [script_arg1] [script_arg2] ...

Options:

 

-x, --args

Optional script argument separator.

-v, --verbose

 

-V, --version

 

Script:

 

If the first argument is an existing file which is not a known binary file format,

it is assumed to be a lua script and gets executed.

Binaries:

Any binary file name before the -x tag gets loaded before running the script. The last binary loaded is the main binary analyzed.

jonathan@blackbox:~$

Example usage of wsh

The following command loads the /usr/sbin/apache2 executable within wsh, calls the

ap_get_server_banner() function within apache to retreive its banner and displays it within the wsh intterpreter.

jonathan@blackbox:~$ wsh /usr/sbin/apache2

>a = ap_get_server_banner()

>print(a)

Apache/2.4.7

>

To get help at any time from the wsh interpreter, simply type help. To get help on a particular topic, type help("topic").

The following example illustrates how to display the main wsh help from the interpreter and how to get detailed help on the grep command by calling help("grep") from the wsh interpreter.

>help

[Shell commands]

help, quit, exit, shell, exec, clear

[Functions]

+basic:

help(), man()

+memory display:

hexdump(), hex_dump(), hex()

+ memory maps:

shdrs(), phdrs(), map(), procmap(), bfmap()

+ symbols:

symbols(), functions(), objects(), info(), search(), headers()

+memory search: grep(), grepptr()

+load libaries:

loadbin(), libs(), entrypoints(), rescan()

+code execution: libcall()

+buffer manipulation:

xalloc(), ralloc(), xfree(), balloc(), bset(), bget(), rdstr(), rdnum()

+control flow: breakpoint(), bp()

+system settings: enableaslr(), disableaslr()

+settings:

verbose(), hollywood()

+advanced:

ltrace()

Try help("cmdname") for detailed usage on command cmdname.

> help("grep")

WSH HELP FOR FUNCTION grep

NAME

grep

SYNOPSIS

table match = grep(<pattern>, [patternlen], [dumplen], [before])

DESCRIPTION

Search <pattern> in all ELF sections in memory. Match [patternlen] bytes, then display [dumplen] bytes, optionally including [before] bytes before the match. Results are displayed in enhanced decimal form

RETURN VALUES

Returns 1 lua table containing matching memory addresses.

>

Extending wsh with Witchcraft Shell Scripts

The combination of a full lua interpreter in the same address space as the loaded executables and shared libraries in combination with the reflection like capabilities of wsh allow to call any function loaded in the address space from the wsh interpreter transparently. The resulting API, a powerfull combination of lua and C API is called Punk-C. Wsh is fully scriptable in Punk-C, and executes Punk-C on the fly via its dynamic interpreter. Scripts in Punk C can be invoked by specifying the full path to wsh in the magic bytes of a wsh shell. The following command displays the content of a Witchcraft shell script:

jonathan@blackbox:/usr/share/wcc/scripts$ cat md5.wsh #!/usr/bin/wsh

--Computing a MD5 sum using cryptographic functions from foreign binaries (eg: sshd/OpenSSL)

function str2md5(input)

out = calloc(33, 1) ctx = calloc(1024, 1)

MD5_Init(ctx)

MD5_Update(ctx, input, strlen(input))

MD5_Final(out, ctx)

free(ctx) return out

end

input = "Message needing hashing\n" hash = str2md5(input) hexdump(hash,16)

exit(0) jonathan@blackbox:/usr/share/wcc/scripts$

To run this script using the API made available inside the address space of sshd, simply run:

jonathan@blackbox:/usr/share/wcc/scripts$

./md5.wsh /usr/sbin/sshd

0x43e8b280

d6 fc 46 91 b0 6f ab 75 4d 9c a7 58 6d 9c 7e 36

V|F.0o+uM.'Xm.~6

jonathan@blackbox:/usr/share/wcc/scripts$

 

 

 

 

 

 

Limits of wsh

wsh can only load shared libraries and ET_DYN dynamically linked ELF executables directly. This means ET_EXEC executables may need to be libified using wld before use in wsh. Binaries in other file formats might need to be turned into ELF files using wcc.

Analysing and Executing ARM/SPARC/MIPS binaries "natively" on Intel x86_64 cpus via JIT binary translation

wsh can be cross compiled to ARM, SPARC, MIPS and other plateforms and used in association with the qemu's user space emulation mode to provide JIT binary translation on the fly and analyse shared libraries and binaries from other cpus without requiring emulation a full operating system in a virtual machine. On the the analyzed binaries are translated from one CPU to an other, and the analysed binaries, the wsh cross compiled analyser and the qemu binary translator share the address space of a single program. This significantly diminishes the complexity of analysing binaries accross different hardware by seemingly allowing to run ARM or SPARC binaries on a linux x86_64 machine natively and transparently.

Core API Overview

basic functions

help(), man()

memory display functions

hexdump(), hex_dump(), hex()

memory maps functions

shdrs(), phdrs(), map(), procmap(), bfmap()

symbols functions

symbols(), functions(), objects(), info(), search(), headers()

memory search functions

grep(), grepptr()

load libaries functions

loadbin(), libs(), entrypoints(), rescan()

code execution functions

libcall()

buffer manipulation functions

xalloc(), ralloc(), xfree(), balloc(), bset(), bget(), rdstr(), rdnum()

control flow functions

breakpoint(), bp()

system settings functions

enableaslr(), disableaslr()

settings functions

verbose(), hollywood()

advanced functions

ltrace()

API speficitations

function help()

WSH HELP FOR FUNCTION help

NAME

help

SYNOPSIS help([topic])

DESCRIPTION

Display help on [topic]. If [topic] is ommitted, display general help.

RETURN VALUES

None

function man()

WSH HELP FOR FUNCTION man

NAME

man

SYNOPSIS man([page])

DESCRIPTION

Display system manual page for [page].

RETURN VALUES

None

function hexdump()

WSH HELP FOR FUNCTION hexdump

NAME

hexdump

SYNOPSIS hexdump(<address>, <num>)

DESCRIPTION

Display <num> bytes from memory <address> in enhanced hexadecimal form.

RETURN VALUES

None

function hex_dump()

WSH HELP FOR FUNCTION hex_dump

NAME

hex

SYNOPSIS hex(<object>)

DESCRIPTION

Display lua <object> in enhanced hexadecimal form.

RETURN VALUES

None

function hex()

WSH HELP FOR FUNCTION hex

NAME

hex

SYNOPSIS hex(<object>)

DESCRIPTION

Display lua <object> in enhanced hexadecimal form.

RETURN VALUES

None

function shdrs()

WSH HELP FOR FUNCTION shdrs

NAME

shdrs

SYNOPSIS shdrs()

DESCRIPTION

Display ELF section headers from all binaries loaded in address space.

RETURN VALUES

None

function phdrs()

WSH HELP FOR FUNCTION phdrs

NAME

phdrs

SYNOPSIS phdrs()

DESCRIPTION

Display ELF program headers from all binaries loaded in address space.

RETURN VALUES

None

function map()

WSH HELP FOR FUNCTION map

NAME

map

SYNOPSIS

map()

DESCRIPTION

Display a table of all the memory ranges mapped in memory in the address space.

RETURN VALUES

None

function procmap()

WSH HELP FOR FUNCTION procmap

NAME

procmap

SYNOPSIS

procmap()

DESCRIPTION

Display a table of all the memory ranges mapped in memory in the address space as displayed in /proc/<pid>/maps.

RETURN VALUES

None

function bfmap()

WSH HELP FOR FUNCTION bfmap

NAME

bfmap

SYNOPSIS

bfmap()

DESCRIPTION

Bruteforce valid mapped memory ranges in address space.

RETURN VALUES

None

function symbols()

WSH HELP FOR FUNCTION symbols

NAME

symbols

SYNOPSIS

symbols([sympattern], [libpattern], [mode])

DESCRIPTION

Display all the symbols in memory matching [sympattern], from library [libpattern]. If [mode] is set to 1 or 2, do not wait user input between pagers. [mode] = 2 provides a shorter output.

RETURN VALUES

None

function functions()

WSH HELP FOR FUNCTION functions

NAME

functions

SYNOPSIS

table func = functions([sympattern], [libpattern], [mode])

DESCRIPTION

Display all the functions in memory matching [sympattern], from library [libpattern]. If [mode] is set to 1 or 2, do not wait user input between pagers.

[mode] = 2 provides a shorter output.

RETURN VALUES

Return 1 lua table _func_ whose keys are valid function names in address space, and values are pointers to them in memory.

function objects()

WSH HELP FOR FUNCTION objects

NAME

objects

SYNOPSIS

objects([pattern])

DESCRIPTION

Display all the functions in memory matching [sympattern]

RETURN VALUES

None

function info()

WSH HELP FOR FUNCTION info

NAME

info

SYNOPSIS

info([address] | [name])

DESCRIPTION

Display various informations about the [address] or [name] provided : if it is mapped, and if so from which library and in which section if available.

RETURN VALUES

None

function search()

WSH HELP FOR FUNCTION search

NAME

search

SYNOPSIS search(<pattern>)

DESCRIPTION

Search all object names matching <pattern> in address space.

RETURN VALUES

None

function headers()

WSH HELP FOR FUNCTION headers

NAME

headers

SYNOPSIS headers()

DESCRIPTION

Display C headers suitable for linking against the API loaded in address space.

RETURN VALUES

None

function grep()

WSH HELP FOR FUNCTION grep

NAME

grep

SYNOPSIS

table match = grep(<pattern>, [patternlen], [dumplen], [before])

DESCRIPTION

Search <pattern> in all ELF sections in memory. Match [patternlen] bytes, then display [dumplen] bytes, optionally including [before] bytes before the match. Results are displayed in enhanced decimal form

RETURN VALUES

Returns 1 lua table containing matching memory addresses.

function grepptr()

WSH HELP FOR FUNCTION grepptr

NAME

grep

SYNOPSIS

table match = grep(<pattern>, [patternlen], [dumplen], [before])

DESCRIPTION

Search <pattern> in all ELF sections in memory. Match [patternlen] bytes, then display [dumplen] bytes, optionally including [before] bytes before the match. Results are displayed in enhanced decimal form

RETURN VALUES

Returns 1 lua table containing matching memory addresses.

function loadbin()

WSH HELP FOR FUNCTION loadbin

NAME

loadbin

SYNOPSIS

loadbin(<pathname>)

DESCRIPTION

Load binary to memory from <pathname>.

RETURN VALUES

None

function libs()

WSH HELP FOR FUNCTION libs

NAME

libs

SYNOPSIS

table libraries = libs()

DESCRIPTION

Display all libraries loaded in address space.

RETURN VALUES

Returns 1 value: a lua table _libraries_ whose values contain valid binary names (executable/libraries) mapped in memory.

function entrypoints()

WSH HELP FOR FUNCTION entrypoints

NAME

entrypoints

SYNOPSIS

entrypoints()

DESCRIPTION

Display entry points for each binary loaded in address space.

RETURN VALUES

None

function rescan()

WSH HELP FOR FUNCTION rescan

NAME

rescan

SYNOPSIS

rescan()

DESCRIPTION

Re-perform address space scan.

RETURN VALUES

None

function libcall()

WSH HELP FOR FUNCTION libcall

NAME

libcall

SYNOPSIS

void *ret, table ctx = libcall(<function>, [arg1], [arg2], ... arg[6])

DESCRIPTION

Call binary <function> with provided arguments.

RETURN VALUES

Returns 2 return values: _ret_ is the return value of the binary function (nill if none), _ctx_ a lua table representing the execution context of the library call.

function xalloc()

No help available for function xalloc()

function ralloc()

No help available for function ralloc()

function xfree()

No help available for function xfree()

function balloc()

No help available for function balloc()

function bset()

No help available for function bset()

function bget()

No help available for function bget()

function rdstr()

No help available for function rdstr()

function rdnum()

No help available for function rdnum()

function breakpoint()

WSH HELP FOR FUNCTION breakpoint

NAME

breakpoint

SYNOPSIS breakpoint(<address>, [weight])

DESCRIPTION

Set a breakpoint at memory <address>. Optionally add a <weight> to breakpoint score if hit.

RETURN VALUES

None

function bp()

WSH HELP FOR FUNCTION bp

NAME

bp

SYNOPSIS

bp(<address>, [weight])

DESCRIPTION

Set a breakpoint at memory <address>. Optionally add a <weight> to breakpoint score if hit. Alias for breakpoint() function.

RETURN VALUES

None

function enableaslr()

WSH HELP FOR FUNCTION enableaslr

NAME

enableaslr

SYNOPSIS

enableaslr()

DESCRIPTION

Enable Address Space Layout Randomization (requires root privileges).

RETURN VALUES

None

function disableaslr()

WSH HELP FOR FUNCTION disableaslr

NAME

disableaslr

SYNOPSIS

disableaslr()

DESCRIPTION

Disable Address Space Layout Randomization (requires root privileges).

RETURN VALUES

None

function verbose()

WSH HELP FOR FUNCTION verbose

NAME

verbose

SYNOPSIS verbose(<verbosity>)

DESCRIPTION

Change verbosity setting to <verbosity>.

RETURN VALUES

None

function hollywood()

WSH HELP FOR FUNCTION hollywood

NAME

hollywood

SYNOPSIS hollywood(<level>)

DESCRIPTION

Change hollywood (fun) display setting to <level>, impacting color display (enable/disable).

RETURN VALUES

None

The following commands are built into wsh

help

Simply typing help in the wsh interpreter displays the following help

>help

[Shell commands]

help, quit, exit, shell, exec, clear

[Functions]

+basic:

help(), man()

+memory display:

hexdump(), hex_dump(), hex()

+ memory maps:

shdrs(), phdrs(), map(), procmap(), bfmap()

+ symbols:

symbols(), functions(), objects(), info(), search(), headers()

+memory search: grep(), grepptr()

+load libaries:

loadbin(), libs(), entrypoints(), rescan()

+code execution: libcall()

+buffer manipulation:

xalloc(), ralloc(), xfree(), balloc(), bset(), bget(), rdstr(), rdnum()

+control flow: breakpoint(), bp()

+system settings: enableaslr(), disableaslr()

+settings:

verbose(), hollywood()

+advanced:

ltrace()

Try help("cmdname") for detailed usage on command cmdname.

>

The advanced help for help follow:

> help("help")

WSH HELP FOR FUNCTION help

NAME

help

SYNOPSIS help([topic])

DESCRIPTION

Display help on [topic]. If [topic] is ommitted, display general help.

RETURN VALUES

None

>

quit

The quit command terminates the main wsh process and exits the wsh interpreter.

Here is the help page for quit

> help("quit")

WSH HELP FOR COMMAND quit

NAME

quit

SYNOPSIS quit

DESCRIPTION

Exit wsh.

RETURN VALUES

Does not return : exit wsh

>

exit

The exit command behaves much like the quit command.

Here is the detailed help for the exit command:

> help("exit")

WSH HELP FOR COMMAND exit

NAME

exit

SYNOPSIS exit

DESCRIPTION

Exit wsh.

RETURN VALUES

Does not return : exit wsh

>

Note on the exit command versus exit() function

It is worth noticing that typing exit(0) in the terminal does something different entirely : this will result in calling the function exit(), typically from the C library, with the parameter 0.

shell

The shell command instanciates an instance of /bin/sh from the wsh interpreter. Terminating the /bin/sh session will allow returning in the parent wsh session.

> help("shell")

WSH HELP FOR COMMAND shell

NAME

shell

SYNOPSIS

shell [command]

DESCRIPTION

Run a /bin/sh shell.

RETURN VALUES

None. Returns uppon shell termination.

>

example usage of the shell command

From the wsh interpreter, the following commands start a /bin/sh shell, run the /bin/id application from this shell, and finally calls exit, which terminates the /bin/sh session and returns into the wsh interpreter.

>shell $ id

uid=1001(jonathan) gid=1001(jonathan) groups=1001(jonathan) $ exit

exec

The exec command allows running an external command from the wsh interpreter.

Here is the detailed help page for the exec command :

> help("exec")

WSH HELP FOR COMMAND exec

NAME

exec

SYNOPSIS

exec <command>

DESCRIPTION

Run <command> via the system() library call.

RETURN VALUES

None. Returns uppon <command> termination.

>

Example usage of the exec command

The following command exemplifies calling the uname system utility with the "-a" argument:

> exec uname -a

Linux blackbox 3.13.0-68-generic #111-Ubuntu SMP Fri Nov 6 18:17:06 UTC 2015 x86_64 x86_64 x86_64 GNU/Linux

>

clear

The clear command clears the terminal. Its detailed help follows:

> help("clear")

WSH HELP FOR COMMAND clear

NAME

clear

SYNOPSIS clear

DESCRIPTION

Clear terminal.

RETURN VALUES

None.

>

Disclaimer

If you are an academic C teacher, your feelings may be hurt by what you are going to read in this page and what we are doing to your very dear and beautiful language for the purpose of binary wizardry. #Enjoy

What is Punk-C ?

Punk-C is the language wsh implements by extending a core lua interpreter with the API "reflected" from all the executables and shared libraries loaded in its address space.

How is Punk C different from C ?

Punk C is not compiled but interpreted. Punk C has no types declarations, does not enforce functions prototypes (wtf?) nor any of the notorious C nightmares. Think C without the problems.

The control statements such as loop iterrators are inherited from lua and do not ressemble those of C.

Note/TODO: Can we hack this last statement by modifying the lua grammars ? :)

What is lua ?

Lua is an amazing open source programming language and implementation. Its interpreter is very tiny yet very powerful. For more information on the Lua language, feel free to visit : https://www.lua.org/

How does binary "reflection" work ?

We use quotes around the word "reflected" because strictly speaking there is no Virtual Machine. wsh and the loaded programs share the same address space. The functionality is made possible by parsing the struct link_map returned by dlopen() when loading a binary. It alows in particular dumping all the symbols known by the dynamic linker and their respective addresses in the address space. This allows providing reflection like functionalities on raw binaries.

From a user perspective, this mechanism is transparent. We can call all of the C API present in memory directly from lua. In particular pass arguments to a C function and retrieve its return value.

Punk-C by example

The following commands examplify how to start wsh by loading the OpenSSH in memory from the path /usr/sbin/sshd. Wsh is then instructed to call the getpid() and getenv() functions and print their results. Those two functions do not exist in the Lua API : they are really made available directly from the libc by wsh's reflection mechanism.

jonathan@blackbox:~$ wsh /usr/sbin/sshd