
PreBoot Authentication
Password Cracking on a

budget

H2HC conference, Sao Paulo, Brasil
Jonathan Brossard, Nov 2009

endrazine@gmail.com

« A desobediência é uma virtude
 necessária à criatividade »

 - Raul Seixas

Before we start...

• Thanks to the organizers,
sponsors and volonteers for
making this happen in Brasil :)

• Thank you for coming.

• I'm very happy to be here !

 Conclusion & bonus !

 Experimental results

 Brute forcer design

 Keyboard internals

 Introduction

Agenda

Goals, contributions :

• Demonstrate the feasability of
brute force attacks on preboot
authentication passwords.

• Give a pessimist estimation of the
cost of password cracking on full
encryption software using a
generic instrumentation
methodology.

• Use this metric to adapt password
length policy acording with the
value of the protected assets.

Juridical environment

• Cryptographic software is mostly legalized in
both North and South America and Europe.

• Wikipedia : « In China, a license is still required
to use cryptography. Many countries have
tight restrictions on the use of cryptography.
Among the more restrictive are laws in
Belarus, Kazakhstan, Mongolia, Pakistan,
Russia, Singapore, Tunisia, and Vietnam. »

• Users of cryptographic software must give
either a copy of their keys or plain text
equivalent of any text asked by authorities in
case of trial, or face prison sentences in most
countries.

Crypto software
 poor reviews

+ Governments interrests
 + global business
communications

 + terrorism blah blah

= high risk of (cryptographic ?)
backdoors

& privacy threats

Is such a thing credible?
• Quoting Wikipedia :

« DES was designed to be resistant to
diferential cryptanalysis, a powerful and
general cryptanalytic technique known to
NSA and IBM, that became publicly known
only when it was rediscovered in the late
1980s. According to Steven Levy, IBM
rediscovered diferential cryptanalysis, but
kept the technique secret at NSA's request.
The technique became publicly known only
when Biham and Shamir re-rediscovered
and announced it some years later. The
entire afair illustrates the difculty of
determining what resources and knowledge
an attacker might actually have. »

Technical motivations
• Even serious developpers

don't test their crypto
software enough, if at all
(Debian SSL bug : ~32k keys).

• Vendors (in particular
Truecypt) have adopted
policies where they do not
cover certain attacks (eg:
Plain text password leakage as
we presented at Defcon 0x16,
or Joanna Rutowska's
evilmaid attack) leaving the
«ofcial» attack surface left to
: computer theft. Or simply
put :

- brute force,
- brute force,
- oh, and of course, brute
force !

More globally

• Non tech people will say :
« if it fails just go for

bruteforce ».
• Sure.. but how do you do it ?
I couldn't fnd a public tool

myself. And then I started to
wonder...

Keyboard internals

II-1) Boot sequence overview

II-2) BIOS API for user
inputs (1/2)

 Interruption 0x16 invoked via functions
:

 ah=0x00 , “Get keystroke” : returns
the keystroke scancode in AH and its
ASCII code in AL.

 ah=0x01 , “Check for keystroke” :
idem, but the Zero Flag is set if no
keystroke is available in the Bios
keyboard bufer.

II-2) BIOS API for user inputs
(2/2)

 eg : lilo password reading
routine :

II-3) BIOS internals for keyboard
management

II-4) BIOS keyboard bufer
Remanance... (1/3)
• Filling the BIOS keyboard bufer

(with the keyboard) :

II-4) BIOS keyboard
bufer Remanence...

• Reading the BIOS keyboard
bufer (using int 0x16, ah=0x00
or 0x01) :

Demo
Simulating keystrokes by

PIC programming
(from real mode)

Demo
Simulating keystrokes by

PIC programming
(from protected mode
under x86 GNU/Linux)

(aka: brute force any GUI)

Exemple of application :

Rebooting a computer
protected with a password
(assuming you know that
password - for now ;), by
simulating keystrokes at
boot time...

Attack scenario :

 I/O
Port
0x60

 I/O Port
0x64

Notes :

- You can get the code for this
attack from the Defcon
archive (the attack is called
« Invisible Man »).

- For our cracking purpose,
writing directly to 0x41e is
way more efcient (but that
was cool, right ? ;)

Demo
Retreiving passwords from

physical memory from
userland without privileges

(up to Vista SP0)

Notes

• Bitlocker's fx in Vista SP1
(replacing any character by ' ')
still leaks the password length.

• This plain text password
leakage vulneability is still
present on many software
including Lilo and Grub if you
can read from arbitrary physical
memory locations (typically
needs root privileges).

Brute forcer design

Challenges

• Installation & initial control
flow modifcation (BIOS
Firmware, other media, MBR
replacing/patching)

• Maintaining control (BP, IVT
hijack, runtime patching)

Design decisions

• We want something as generic
as possible, so we will avoid
application specifc
breakpoints etc.

• The media we boot from is
irrelevant (usb/cdrom/floopy..)

• Keeping control over the
control flow is a bit tricky.

• Very similar to MBR virus
writting (old school !! ;)

Interrupts hijacking

• Int 0x13 : we need to proxy
calls to the original int 0x13,
changing disk number (dl). It
also allows to detect
successfull decryption

• Int 0x16 : simulate keystrokes
• Int 0x10 : for performance (we

don't need display)

Full attack scenario

• Boot from our code (1 sector)
• Allocate BIOS memory
• Copy the rest of our code there
• Patch the IVT (int 0x16, int

0x10, 0x13)
• Emulate int 0x19 (copy code

from original MBR to
0x00:0x7c00, jump there)

jonathan@blackbox:~/h2hc$
cat BF-OS.asm |grep -v "^;"|
grep [a-Z0-9]|wc -l
902
jonathan@blackbox:~/h2hc$

Demo
Bruteforcing Lilo

Demo
Bruteforcing Grub

with MD5 hash

Demo
Bruteforcing

full disk encryption
 with TrueCrypt 6.3

Experimental results

It's doable :)

Result #1

Result #2

The cost of hashing algorithms
(MD5..) is negligible in the

cracking process

Result #3 : performance

Hashing algorithms : we tried 705
passwords in 30s.

Truecrypt : 10s / password
(whow !)

Metrics
(assuming a hashing

algo is used)

Time taken to crack

 Irrelevant
(cloud computing !)

Search space

 S = sigma (i=1,length) sizeof(charset)^i

Cost

C = O (S * 3/70 * cpu_freq/(1.6GHz) *
cost_per_hour)

Amazon EC2

Cost

C ~ 3/70 * 0.085 * sigma (i=1,length)
(sizeof(charset)^length)

Cost

Exemple :
charset = [a-z]
Pass length = 5

Cost ~ $45 000

Cost

Exemple :
charset = [a-z]
Pass length = 8

Cost ~ $800 000 000

Cost

Exemple :
charset = [a-zA-Z0-9]

Pass length = 8

Cost ~ $800 000 000 000

Conclusions (1/2)

- Bruteforcing is physically doable for
both hashing algorithms and complex
symetric systems.
- Bruteforcing remains unpractical
against Truecrypt so far (6 passwords /
minute, recommended pass phrases of
length 20).
- This methodology, while generic, is
too costly to be practical against strong
passwords (unless you're .gov ?).

Conclusions (2/2)

- Not using TPM like technologies allows
attackers to take advantage of
distributed computing, making the
brute force time irrelevant.

Bonus
Random ideas dump that

could not ft anywhere else
in the presentation...

Having Alan Cox code your
i386 real mode backdoor

(if you can't aford a trainee...)

Faxineira.asm
Joanna Rutowska's Evilmaid

attack made generic

(trojan & snif any software's password)

Faxineira.asm
EvilMaid made generic
• Allocate BIOS memory.
• Copy yourself (1 sector) there,

jump there.
• Hijack int 0x10 : save any

pressed key to a 16 bytes
bufer, then jump to old
handler.

• Copy old MBR at 0x00:0x7c00
• Jump to 0x00:0x7c00

Bootkit/Rootkit :
 MBR ? floppy ?

usb drive ? Cdrom ?

Network connections from
bootloaders

 (without coding your own network stack)

Other possible attacks

• Timing attacks (count ticks
using rdtsc)

• Glitching (won't work :-()

• Getting physical :
FPGA (for hashing algos only :
nsa@home project)

mailto:nsa@home

A few more things on
TrueCrypt 6.3

Truecrypt's policy and
assumed attack surface

• No TPM support. Won't happen.
• No support against root or physical

attacks (bootkits, trojaning ...)
• Regarding full disk encryption (the

real thing why TC is great) : no
keyfles support as of version 6.3.

No TPM means

• No hardware sealing.
• We can modify the

bootloader.
• We can scale on

hardware/virtualisation.

Key/pass repudiation

• Setting a new key/passphrase
pair is not enough : one needs
to fully decrypt the drive, and
then fully re encrypt it.

• Old key/pass pair would still be
valid otherwise.

Forensics : HD dump vs.
Rescue iso image

• They contain exactly the same
crypto information (salt+keys :
only password is missing).

• We can very well brute force
from a Rescue cdrom image
(easier to clone/steal than a
whole HD).

• This is not intuitive : social
engineering risk increased.

Demo
Reversing the

Truecrypt Rescue disk

Valeu pela presenca ;)

Questions ?

