

Hardware Backdooring is practical

Jonathan Brossard (Toucan System)
Florentin Demetrescu (Cassidian)

DISCLAIMER

 We are not « terrorists ». We won't release our
PoC backdoor.

 The x86 architecture is plagued by legacy.
Governments know. The rest of the industry :
not so much.

 There is a need to discuss the problems in
order to find solutions...

 This is belived to be order of
magnitudes better over existing
backdoors/malware

Agenda

 Motivation : state level backdooring ?
 Coreboot & x86 architecture
 Flashing Coreboot on a motherboard
 State of the art in rootkitting, romkitting
 Introducing Rakshasa
 Evil remote carnal pwnage (of death)
 Why cryptography (Truecrypt/Bitlocker/TPM)

won't save us...

Could a state (eg : China) backdoor
all new computers on earth ?

A bit of x86 architecture

Demo : flashing Coreboot on a
motherboard

State of the art, previous work

Previous work
 Early 80s : Brain virus, targets the MBR
 80s, 90s : thousands of such viruses
 2007, John Heasman (NGS Software) Blackhat US:

backdoor EFI bootloader
 2009, Anibal Saco and Alfredo Ortega (Core security),

CanSecWest : patch/flash a Pheonix-Award Bios
 2009, Kleissner, Blackhat US : Stoned bootkit. Bootkit

Windows, Truecrypt. Load arbitrary unsigned kernel
module.

 2010, Kumar and Kumar (HITB Malaysia) : vbootkit
bootkitting of Windows 7.

 Piotr Bania, Konboot : bootkit any Windows (32/64b)

DEMO : Silently Bootkitting windows
2008

Introducing Rakshasa

Goals : create the perfect backdoor

 Persistant
 Stealth (virtually undetectable)
 Portable (OS independant)
 Remote access, remote updates
 State level quality : plausible deniability, non

attribution
 Cross network perimeters (firewalls...)
 Redundancy

Rakshasa : design

 Core components :

Coreboot
SeaBios
iPXE
payloads

Built on top of free software : portability, non
attribution, cheap dev (~4 weeks of work),
really hard to detect (without false positives).

 Payload : Reverse Engineered/Refactored
konboot payload (2 days of work).

Rakshasa

 Flash the BIOS (Coreboot + PCI roms such as
iPXE)

 Flash the network card or any other PCI device
(redundancy)

 Boot a payload over the network (bootkit)
 Boot a payload over wifi/wimax (breach the

network perimeter, bypasses network detection,
I(P|D)S)

 Remotely reflash the BIOS/network card if
necessary

Rakshasa : embedded features

 Remove NX bit (from BIOS or PCI)
=>executable heap/stack.

 Remove CPU updates (microcodes)
 Remove anti-SMM protections (=>local root)

 => Permantent lowering of the security level on
any OS. Welcome back to the security level of
1999.
=> Persistant, even if HD is remove/restored.

Optionally : Disable ASLR (bootkitting) by
patching the seed in kernel land on the fly on
Windows.

Rakshasa : remote payload

 Bootkit future Oses
 Update/remove/reflash firmwares (PCI, BIOS)
 Currently capable of Bootkitting any version of

Windows (32b/64b)
 Use a minimal linux initrd in case we want to

mount/modify the filesystem (/etc/shadow on
any UNIX like, add new account with ADMIN
privileges on Windows, enable remote desktop
– possibly enable dual remote desktop on
Windows XP Pro by patching 2 dlls...)

Rakshasa : stealthness

 We don't touch the disk. 0 evidence on the
filesystem.

 We can remotely boot from an alternate
payload or even OS : fake Truecrypt/Bitlocker
prompt !

 Optionally boot from a WIFI/WMAX stack : 0
network evidence on the LAN.

 Fake BIOS menus if necessary. We use an
embedded CMOS image. We can use the real
CMOS nvram to store encryption
keys/backdoor states between reboots.

Rakshasa : why using
Coreboot/SeaBios/iPXE is the good

approach

 Portability : benefit from all the gory reverse
engineering work already done !

 Awesome modularity : embbed existing
payloads (as floppy or cdrom images) and PCI
roms directly in the main Coreboot rom !
Eg : bruteforce bootloaders (Brossard, H2HC
2010), bootkits without modification.

 Network stack : ip/udp/tcp, dns, http(s), tftp,
ftp... make your own (tcp over dns? Over ntp ?)

PCI rom from scratch (asm)

section .text

;--------------------------

; Bios expension ROM header

;--------------------------

 db 0x55 ; Signature

 db 0xaa ; Signature

 db 17 ; number of sectors

_start:

DEMO : Evil remote carnal pwnage
(of death)

I can write blogs too... Muhahahaha...

Rakshasa

 Flash the BIOS (Coreboot + PCI roms such as
iPXE)

 Flash the network card or any other PCI device
(redundancy)

 Boot a payload over the network (bootkit)
 Boot a payload over wifi/wimax (breach the

network perimeter, bypasses network detection,
I(P|D)S)

 Remotely reflash the BIOS/network card if
necessary

How to properly build a botnet ?

 HTTPS + assymetric cryptography (client side
certificates, signed updates)

 Fastflux and/or precomputed IP addresses

If Microsoft can do secure remote updates, so
can a malware !

Avoid DNS take overs by law enforcement
agencies by directing the C&C rotatively on
innocent web sites (are you gonna shut down
Google.com?), use assymetric crypto to push
updates.

 So you own my C&C for 1hour ? You can't do
anything with it !!

=> CAN'T BE SHUT DOWN.

Why crypto won't save you...

Why crypto won't save you...

 We can fake the bootking/password prompt by
booting a remote OS (Truecrypt/Bitlocker)

 Once we know the password, the BIOS
backdoor can emulate keyboard typing in 16b
real mode by programming the
keyboard/motherboard PIC microcontrolers
(Brossard, Defcon 2008)

 If necessary, patch back original
BIOS/firmwares remotely.

How about Avs ??

 Putting an AV on a server to protect against
unknown threats is purely cosmetic.

 You may as well put lipstick on your servers...

Example : 3 years old bootkit

Example : 3 years old bootkit (+
simple packer)

Realistic attack scenarii

Realistic attack scenarii

 Physical access :

Anybody in the supply chain can backdoor your
hardware. Period.
Flash from a bootable USB stick (< 3mins).

 Remote root compromise :
If (OS == Linux) {

flash_bios;

 } else {
Pivot_over_the_MBR ;

}

Realistic attack scenarii

 Purchase pre-backdoored hardware

BONUS : Backdooring the
datacenter

Remediation

Remediation (leads)

 Flash any firmware uppon reception of new hardware with
open source software

 Perform checksums of all firmwares by physically
extracting them (FPGA..) : costly !

 Verify the integrity of all firmwares from time to time
 Update forensics best practices :

1) Include firmwares in SoW
2) Throw away your computer in case of intrusion

Even then... not entirely satisfying : the backdoor can flash
the original firmwares back remotely.

Side note on remote flashing

 BIOS flashing isn't a problem : the flasher
(Linux based) is universal.

 PCI roms flashing is (a bit of) a problem :
vendor dependant...

Detecting network card
manufacturer from the remote C&C

 IPXE allows scripting. Eg : sending the MAC
address as an URL parameter.

 From the MAC, get the OUI number serverside.
 From the OUI number, deduce manufacturer
 Send the proper flashing tool as an embedded

OS to the backdoor...

Questions ?

